Name: Key

MA131/135: College Algebra

Instructor: Justin Ryan

Midterm Exam 1—Sections 1.1-1.5, and 2.1-2.3

Read and follow all instructions.

Part I: True or False [5 points each]

Read each statement carefully. In the space provided, write \mathbf{T} if the statement is <u>always</u> true, or \mathbf{F} otherwise.

Slopes are opposite reciprocals.

 $V = -\frac{1}{2}X + \frac{4}{5}$

_____3. The vertex of $y = x^2 + 2x - 1$ is (-1, -2).

 $y = (x+1)^2 - 2$

_____4. The lines y = 2x - 5 and 4x - 2y = 12 are parallel.

y= 2x-6

Part II: Fill in the Blank [5 points each]

Choose the appropriate word or phrase from the word bank, and write its corresponding letter in the space provided.

Word Bank:

- A. Point-Slope B. Reflection C. Right
- D. Skew E. x-axis F. y-axis
- G. Down H. Left I. Slope-Intercept
- J. Standard K. Rotational L. Up
- ______5. The graph of the function $f(x) = 13x^4 5x^2 + 7$ has ______ symmetry.
- **A** 6. " $y y_1 = m(x x_1)$ " is called the _____ form of the equation of a line.
- **7.** The graph of the function $f(x) = (x+3)^3$ is obtained by shifting the graph of the parent function _____ 3 units.
- K 8. If a function f is odd, then its graph has _____ symmetry.

Part III: Multiple Choice [5 points each]

Write the letter corresponding to the appropriate answer in the space provided.

Find an equation of the line passing through the points P(2,4) and Q(-2,6).

A.
$$y = -2 \times + 8$$

$$\mathbf{B}$$

B.
$$y=2x$$
 $m = \frac{6-4}{-2-2} = \frac{2}{-4} = -\frac{1}{2}$

C.
$$\frac{y}{2x} + 8$$

$$y = -\frac{1}{2}x + 5$$

D.
$$y=-\frac{1}{2}\times+3$$
 $y=4-\frac{1}{2}(x-2)$
 $y=4-\frac{1}{2}\times+1$

$$\lambda = -\beta \times +2$$

_10. The graph of $y = \sqrt{x}$ is reflected over the y-axis, then stretched vertically by a factor of 2, then shifted down 3 units and left 1 unit. Give an equation of the function defined by the resulting graph. In order:

A.
$$f(x) = -\sqrt{2x+1} - 3$$

B.
$$f(x) = -2\sqrt{x+1} - 3$$

C.
$$f(x) = 2\sqrt{-x-3} - 1$$

D.
$$f(x) = 2\sqrt{-x} \cdot 1 - 3$$

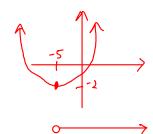
A.
$$f(x) = -\sqrt{2x+2} - 3$$
 B. $f(x) = -2\sqrt{x+1} - 3$ $f_1(x) = \sqrt{-x}$ C. $f(x) = 2\sqrt{-x}$ D. $f(x) = 2\sqrt{-x}$ 1 -3 $f_2(x) = 2\sqrt{-x}$ $f_3(x) = 2\sqrt{-x+1}$ $f_4(x) = 2\sqrt{-x-1}$

_11. Find the distance between the points P(14, 10) and Q(8, 18).

B. 100
$$d(\gamma_{1}) = \sqrt{(x_{2} + y_{1})^{2} + (y_{2} - y_{1})^{2}}$$

$$= \int (14-8)^2 + (10-18)^2$$

$$= \int 6^2 + (-8)^2$$


$$= \int \frac{36+64}{100}$$

=10

12. On what interval is the function $f(x) = (x+5)^2 - 2$ increasing?

A.
$$(-5, \infty)$$

D.
$$(-\lambda, -\infty)$$

A 13. What type of discontinuity, if any, does the function $f(x) = \frac{x^3 + 1}{x + 1}$ have at the point x = -1?

- A. hole
- B. jump D. none
- C. vertical asymptote

$$f(x) = \frac{x^3 + 1}{x + 1}$$

$$= \frac{(x+1)(x^2 - x + 1)}{x + 1}$$

$$= x^2 - x + 1, \quad x \neq -1$$
hale

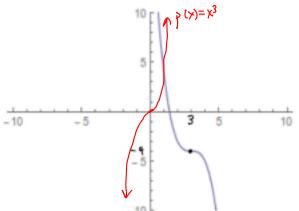
_____14. What is the domain of the function $f(x) = \frac{1}{\sqrt{x-2}}$?

- A. (-0,2)
- B. [2, 10)
- X-J>0 X > 2

- C. $(2,\infty)$
- D. (-∞,2)

D 15. Describe how the graph of $y = (x+5)^3 + 2$ is obtained from the graph of the parent function.

- A. lefts, down 2 B. nyhts, up2
- C. night 5, down 2 D. shift left 5 and up 2


- A. even
- B. odd
- C. neither D. I have no idea droller

 $f(-x) = \frac{(-x)^3 - (-x)}{\lambda(-x)^5 - 3(-x)} = \frac{-x^3 + x}{-2x^5 + 3x} = \frac{-(x^3 - x)}{-(2x^5 - 3x)} = \frac{x^3 - x}{2x^5 - 3x} = f(x).$ ENEN

Part IV: Short Answer [10 points each]

Show enough work. Clearly mark your final answers. Partial credit given when deserved.

17. The following graph defines a function, y = f(x). Use the graph to (a) identify the parent function, (b) list all transformations (in an acceptable order), and then (c) write an equation of the function.

- parent: p(x)=x3

 transformations: reflect over X-axis

 down 4

 right 3
 - Equation: $f(x) = -(x-3)^3 4$

18. Find an equation of the line passing through the point P(1, -2) and parallel to the line 6x - 12y = 36.

$$6x = 12y + 36$$

$$12y = 6x - 36$$

$$y = (\frac{1}{2}x - 3)$$

$$y = \frac{1}{2}$$

$$\lambda^{-1} = w(x-x_1)$$

$$\lambda^{-1} = \frac{1}{2}x - \frac{1}{2} - \frac{1}{2}x = \frac{1}{2}$$

$$\lambda^{-1} = \frac{1}{2}x - \frac{1}{2} - \frac{1}{2}x = \frac{1}{2}$$