Section 2.1—Graphs of Parent Functions

Definition A function is **continuous** on an interval of its domain if and only if the graph can be drawn without lifting our pencil.

Examples of discontinuities

jumps, holes, and asymptotis.

HOLE

ASYMPTOTE

holes are "removable". We can "fill them in" by defining the function to equal what it's "supposed to" at that x-value.

Increasing, Decreasing, and Constant functions

A function is (increasing) on an interm (a,b) if and mly if $\begin{cases}
f(c_1) < f(c_2) \\
f(c_1) > f(c_2)
\end{cases}$ Such that $a < c_1 < c_2 < b
\end{cases}$

Example Determine the intervals on which the function is increasing, decreasing, and/or constant.

The Identity Function

$$f(x) = x$$

The Squaring Function

Symmetries of the Identity and Squaring Functions

The identity function has symmetry about the origin (notational symmetry).

The squaring function has symmetry about the y-AXB.

Symmetry and Even/Odd Functions

A function 13 even if and only if
$$f(-x)=f(x)$$
 for all x.
and odd if and only if $f(-x)=-f(x)$ for all x.

The Cubing Function

$$F(x) = x^3$$

$$y = x^3$$

Symmetry of the Cubing Function

Analytically,
$$f(-x)=(-x)^3=-x^3=-f(x)$$
.
So $f(x)=x^3$ is odd.
Therefore the graph $\eta=x^3$ is symmetric about the origin.
A ranky it!

The Absolute Value Function

$$f(x) = |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

The Relation $x = y^2$

Symmetry about the *x*-axis

$$x=y^2$$
 is symmetric about the x-axi3 because as a function of y , it is even.

As far as we are concerned, $x=y^2$ is not a function.

As for as we are concerned,
$$x=y^2$$
 is not a function.
In this course, we want to consider functions of x.

The ONLY function with x-axis symmetry

... is vary boring.
$$y = 0$$
. Verity it.

Example Determine whether the functions are even, odd, or neither. What kind of symmetry to the graphs have (if any)?

(a)
$$f(x) = 13x^3 + x^5 - 6x$$

$$f(-x) = 13(-x)^3 + (-x)^5 - 6(-x)^3 + (-x)^5 - 6(-x)^5 + 6x$$

$$= -(13x^3 + x^5 - 6x)$$

$$= -f(x)$$

(b)
$$g(x) = x^4 - 15x^2 + 12$$

$$\int_{0}^{1} (-x)^2 = (-x)^4 - 15(-x)^2 + 12$$

$$= x^4 - 15x^2 + 12$$

$$= g(x)$$
EVEN

$$(c) f(x) = \frac{x^3 + 12x}{2x^2 - 15}$$

$$f(x) = \frac{(-x)^3 + 12(-x)}{2(-x)^2 - 15} = \frac{-x^3 - 12x}{2x^2 - 15} = \frac{-(x^3 + 12x)}{2x^2 - 15} = -f(x)$$

(d)
$$h(x) = 2x^2 - 8x + 15$$

$$h(x) = 2(-x)^2 - 8(-x) + 15$$

$$= 2x^2 + 8x + 15$$
Nether