Section 2.3—Stretching, Shrinking, and Reflecting Graphs

Let c > 1 be a positive constant that is larger than 1, and let y = p(x) be a function with a known graph. The following table describes how to obtain the graph of a function y = f(x) by using the graph of the parent function.

_function	effect on the parent graph
$f(x) = c \cdot p(x)$	vertical stretch by a factor of c
$f(x) = \frac{1}{c} \cdot p(x)$	vertical shrink by a factor of c
$f(x) = p(c \cdot x)$	horizontal shrink by a factor of c
$f(x) = p\left(\frac{x}{c}\right)$	horizontal stretch by a factor of c

Example Let c = 2. Sketch the graphs of each possible transformation in the table above for

the function $p(x) = x^2$.

Consider the function $f(x) = 2x^2 - 4x + 4$. Describe all transformations in the graph of the parent function.

Before we can complete the squares

$$y=2x^{2}-4x+4$$

Before we can complete the squares

$$y=2\left(x^{2}-2x+2\right)$$

$$y>2\left(x^{2}-2x+1\right)+(x-1)$$

$$y>2\left(x^{2}-2x+1\right)+(x-1)$$

$$y=2\left(x-1\right)^{2}+1$$

$$y=2\left(x-1\right)^{2}+1$$

Shifts: Right 1 unit
up 2 units

$$y=2\left(x-1\right)^{2}+1$$

Stretch/Shnik: V-stretch by
$$y=2\left(x-1\right)^{2}+2$$

Factor of 2

Let y = p(x) be a function with a known graph. The following table describes how to obtain the graph of a function y = f(x) by using the graph of the parent function.

function	effect on the parent graph
f(x) = -p(x)	reflection over the <i>x</i> -axis
f(x) = p(-x)	reflection over the <i>y</i> -axis

Reflection across the x-Axis Reflection across the y-Axis

Example Sketch the graphs of $y = -\sqrt{x}$ and $y = \sqrt{-x}$.

Example Describe the transformation and write an equation of the function defined by the graph.

Example Write the equation in vertex form and describe the transformations of the graph.

$$y = -3x^2 - 9x + 3$$

Completing the square, again.

$$y = -3\left(\left(x^{2} + 3\right)x + \frac{9}{4}\right) + \left(-1 - \frac{9}{4}\right)$$

$$y = -3\left(\left(x + \frac{3}{2}\right)^{2} - \frac{13}{4}\right)$$

$$y = -3\left(\left(x + \frac{3}{2}\right)^{2} - \frac{13}{4}\right)$$

$$y = -3\left(\left(x + \frac{3}{2}\right)^{2} + \frac{39}{4}\right)$$

$$y = -3\left(\left(x + \frac{3}{$$