Project 2.6 -- Families of Implicit Curves

In this notebook we complete the project for section 2.6 of Stewart's book.

This notebook was made using SageMath (http://sagemath.org) in a browser-based Jupyter notebook (http://jupyter.org).

In [1]:
version()
Out[1]:
'SageMath version 7.5.1, Release Date: 2017-01-15'
In [2]:
%display latex
In [3]:
(x,y) = var('x y');
In [4]:
left = y**2 - 2*x**2*(x+8);
In [5]:
right = (y+1)**2*(y+9) - x**2;
In [6]:
c =[None]*2;
c[0] = implicit_plot(left == 0,(x,-1,1),(y,-1.5,-0.5));
c[1] = implicit_plot(left == 2*right,(x,-1,1),(y,-1.5,-0.5),color='red');
In [7]:
show(sum(c),title='Part 1.a')
In [8]:
c.append(implicit_plot(left == 5*right,(x,-1,1),(y,-1.5,-0.5),color='green'));
c.append(implicit_plot(left == 10*right,(x,-1,1),(y,-1.5,-0.5),color='purple'));
In [9]:
show(sum(c),title='Part 1.b')
In [10]:
k = var('k');
f = x**2 + y**2 + k*x**2*y**2;
In [11]:
cc = [None];
for j in [-6..6]:
    if j == -6:
        cc[0] = implicit_plot(f(k = j/3) == 1,(x,-2,2),(y,-2,2),color=hue((12+j)/18));
    else:
        cc.append(implicit_plot(f(k = j/3) == 1,(x,-2,2),(y,-2,2),color=hue((12+j)/18)));
In [12]:
show(sum(cc),title='Part 2.a')
In [13]:
implicit_plot(f(k = -1) == 1,(x,-2,2),(y,-2,2),title='Part 2.b')
Out[13]:
In [14]:
var('x k');
y = function('y')(x);
ff = x**2 + y**2 + k*x**2*y**2;
In [15]:
impd = ff.diff(x);
z = solve(impd == 0,y.diff(x))
z[0]
Out[15]:
In [16]:
impd(k = -1)
Out[16]: