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B The Normal and Binormal Vectors
\We can think of the normal vector as indicating AL @ given point on a smooth space. curve rir), there are rn_arl_'.r vectors that are orthogon|
the direction in which the curve is turning at to the unit tangent vector T(r). We single out one by ::rhsen'mg '!h:-‘l[: bﬂFause | TE)| = 1 for
all 1. we have T(1) - T'(r) = 0 by Example 4 in Section 13.2, so T'(r) is orthogonal to Ty

each pont,
/—-— Note that T'(r) is itself not a unit vector. But at any point where k # 0 we can define the

Tiry = pﬂﬂl‘ipﬂl unit normal vector Wit {or H'ij!'!l'l!_\. unit I'I'!II'IIIH” as

£ g

Bir

J i
= N( = —
d4
The vector Bir) = Tin) * Nir)is calle’ ctor. It is perpendicular to both T
FIGURE 6 and N and is also a unit vector. (5ee i
Figure 7 illustrates Example B by showry i« EITEF Find the unit normal and binc . for the circular helix
vectors T, N. and B at tweo locatons on 1
rry=cosri+sni)+ rk

helix. In general, the vectors T, N, and K. start-
ing at the varigus points on a Curve, form a sai
of orthogonal vectors, calied the TNB frame, : ™ o . ) ‘
that moves along the curve as ¢ varies. This SOLUTION We first compute the ingredients needed for the unit normal vector:
TNB frame plays an important role in the : o
branch of mathematics known as differential r'if) = —sinti+costj+ k ||'J{f” — ﬁ
geometry and in its applicanions to the rmtian
of spacecrafl ) (1) I
= T= (—sinti+cosrj+
I et} | /2 tj + k)

T = — § — sin} l
t —TE—{_EDG-'I—EII'IU} |T’{|‘}I|=7E'
T'(2)
N(r) = = —costi—sintj= (—cost, —sint,0)

|T'(0) |

This shows that the normal vector at any poj o . .
. Y point on the tal and points
toward the z-axis. The binormal vector is helix is horizon

| i k
FIGURE 7 Bir) = = —I— i -
(1) = T(r) X N(n) 7 =sin ¢ cost | | = Lz {sin f, —cos I 1}

—Cost —simr 0



LA visual 13.38 shows how the TNB frame
moves along sevaral curves,

Figure B shows the helix and the osculating
plane in Example 7.

FIGURE &
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osculating

circle
|

FIGURE 3

m Visual 13.3C shows how the osculating
tircle changes as a point moves along a curve.
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The .
curve Cp::t:g:tf?&'““d bY the normal and binormal vectors N and B at a point P on a
10 the tangent veetor an‘[}-]:;“a] Plane of C at P. It consists of all lines that are orthogonal
Plane of ¢ 4 p The & Plane determined by the vectors T and N is called the osculating
that comes dm{;ﬂ e nﬂmﬁ_':?mes from the Latin osculum, meaning “kiss.” It is the plane
lating plane is «; containing the part of the curve near P, (For a plane curve, the oscu-

<A s simply the plane that contains the curve.)

onihis c{:':‘:::vtﬁ:}d];ﬂﬁ f1n the osc ulming plane of C at P, has the same tangent as C at P, lies
O thé i Side of C (toward which N points), and has radius p = 1 /& (the reciprocal
ature} is called the osculating circle (or the circle of curvature) of C at P. It is

25t dE:S-Cribcs how C behaw FP:i
€5 Nne N t 1
e ar P it shares the same tangent, normal, and

.EEEEM Find the equations of the normal plane and osculatin g plane of the helix
' Example 6 at the point P(0, 1, 7/ 2},

SOLUTION The normal

tion is plane at P has normal veetor ¢'(7/2) = {—1,0,1), so0 an equa-

—lx=0)+0(y - 1) + I(z—l;*)=l) or z=x+%

The osculating plane at P contains the vectors T and N, so its normal vector is
T % N = B. From Example 6 we have

B(r) = :% {sint, —cosr, 1) B(%—) - <% 0, %)

A simpler normal vector is (1,0, 1), so an equation of the osculating plane is

1Lt--[l]+ﬂ[_r—1}+I(z—%)={] or z=—_t+% —
<A IZEE Find and graph the osculating circle of the parabola y = x? at the origin.

SULUTION. From Example 5, the curvature of the parabola at the origin is «(0) = 2. So
thwe radius of the osculating circle at the origin is 1/k = !gand its center is (0, %] Its equa-

tion is therefore
1

X+(y—3) =4
For the graph in Figure 9 we use parametric equations of this circle:

L |
x=3c0s! y=j+3sint =

We summarize here the formulas for unit tangent, unit normal and binormal vectors, and
curvature.

(1) __T
T{r}=-—~| 70| N(z) )|

_1T®W] _ v x x|
[r'@)| [rn [P

B(r) = T(r) % N()

_ |91
| ds
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60. The following formulas, called the Frenet-Serret formulas,
are of fundamental importance in differential geometry:

1. dT/ds = kN
2 dN/ds = —xT + B
d dB/ds = — N
(Formula 1 comes from Exercise 57 and Formula 3 comes

from Exercise 59.) Use the fact that N = B X T to deduce For-
mula 2 from Formulas 1 and 3.

61. Use the Frenet-Serret formulas to prove each of the following.
(Primes denote derivatives with respect to r. Start as in the
proof of Theorem 10.)

{a) r" = 5"T + k(s'VN

§3. Use the formula in Exercise 61(d) to find the ,m"m_"“
curve rif) = (r.30% ,'.I’}'.
. d the curvature and torsion of the curve x = siph
" flldumh t. z = t at the point (0, 1. 0).
: f a double heli
The DNA molecule has the shape o helix (see
65. Fil_lgure 3 on page 866). The radius of tach helix is abey
10 angstroms (1 A = 107* em). Each helix rises aboy; %4
during each complete turm, and there are about 2.9 x g

complete turns. Estimate the length of each helix.

Let's consider the problem of designin; a railroad track 1,
make a smooth transition between sections of straight ek
Existing track along the negalive x-axis is to be joined
smoothly to a track along the line y = 1 forx = 1.

(a) Find a polynomial P = P(x) of degree 5 such that the .

e = = K‘_S'}]B uon F defined b.‘!'
w L b L | T F# By r "‘E ﬂ ir .I' !E u
cr [s V)T + [3es's” + k(s N + xris’) Fld =P f0<x<l
P L el 1 ifx=1
|e' = e |? ) _ ]
is continuous and has continuous slope and continuous
62 Show thai the circular helix rir) = {a cosr, a sin r, bi). curvature.
where a and b are positive constants, has constant curvature (b) Use a graphing calculator or computer to draw the graph
and constant torsion. [Use the result of Exercise 61(d).] of F.
m Motion in Space: Velocity and Acceleration B
In this section we show how the ideas of 000 o 1a! vectors and curvature can be
used in physics to study the motion of &n - 12 1ts velocity and acceleration,
along a space curve. In particular, we foll v, : teps of Newton by using thess

methods to derive Kepler's First Law of planetary 1 <

L1

Suppose a particle moves through space so thai 11+« ition vector at time ¢ is F(f) Notice
from Figure | that, for small values of &, the vector

rir + h) — ri)
h

approximates the direction of the particle moving along the curve r(1). Its magnitude me
sures the size of the displacement vector per unit time. The vector [1] gives the averags
velocity over a time interval of length h and its limit is the velocity vector v(r) at time -

X

FIGURE 1 12

rir + h) = rir)

v(r) = lim = r'(r)

h—0 h
]

line.

The speed of the particle at time ris the magnitude of the velocity vector, thatis.

Thus the velocity vector is also the tangent vector and points in the direction of the tange™

vir) 1-Thi5

is appropriate because, from [2] and from Equation 13.3.7, we have

= lefal . d5 .
[v()]| =|r'(n| = g~ rate of change of distance with respect to Ume
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As in the cag ; :
derivative :;:E[ of one-dimensional motion, the acceleration of the particle is defined as the

he velocity:
alt) = v'(r) = r'(r)
b)) = 9§ + 21; pF‘?S:;mn ‘I-"E;:lnr of an object moving in a plane is given by
. Fin It!i‘m'l:uc't‘ \ 4 e L
geometrically, ity, speed, and acceleration when r = 1 and illustrate

SOLUTION The velocity and acceleration at time ¢ are

¥i) =) =31+ 2
alt) =r"() = 6ri + 2j

and the speed is
FIGURE 2 |¥(}| = V3P + @07 = Jor + ar
R visual 134 shows animated velocity When t = 1, we have
and_ accelaration vactors for objacts maving along
Various CuIves. vil) =3i+2]j all) =6i+2j |¥i(1)]| = /13
These velocity and acceleration vectors are shown in Figure 2. —

Figure 3 shows the path of the o

EIITE Find the velocity, acceleration, and speed particle wi iti
Example 2 with the velocity an: n ¥ I - ofa — o

vector r(f) = (r% e', re').

wectors whan ¢ = |
SOLUTION
|il
E vit) = r'(0) = (2r. e, (1 + He')
aln) =v'lr) = (2, (2 + r)e’)
[¥(r)] = V412 + e¥ + (1 + rPe” [ —]
= ¥ The vector integrals that were introduced in Section 13.2 can be used to find position vec-

tors when velocity or acceleration vectors are known, as in the next example.

A moving particle starts at an initial position r{0) = {1, 0, 0} with initial
velocity ¥(0) = i — j + k. Its acceleration is a(t) = 4ri + 6¢j + k. Find its velocity
and position at time 1.

SOLUTION Since alr) = v'(1), we have
vir) =J.a[.".ldr= [(4” + 61§ + k) dr
=21+ 3j+tk+C

To determine the value of the constant vector C, we use the fact that v(0) =i — j + k.
The preceding equation gives ¥(0) = C,s0C =i — j + k and

v{:}=2f1i+3flj+'k+i—1+k

=20+ Di+BF=Dj+ 0+ Dk
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The expression for rir) that we obtained in
Example 3 was used to plot the path of the
particle in Figure d for 0 = 1 = 3.

FIGURE 4

The angular speed of the objsct maving with
position P is w = d8/dt, where 615 he
angle shown i Figure 5,

¥

FIGURE 5
v
¥a
'-\.I“ _
0F —— — X
d
FIGURE 6

Since v(t) = r'(r), we have

r() = [ v di
=[[(2:=+ Di+ G — D+ @+ Dkldt
(e +it @ -0j+ G+ )k + D

Putting ¢ = 0, we find that D = r(0) = i. so the position at time £ is given by

=+ 1)it (0 =nj+ (3 + 1)k i

In general, vector integrals allow us to recover velocity when acceleration is known ang
position when velocity is known:

' i
vir) = wit) + I alu) du rif) = r(t) + J: V() du

L1 L}
If the force that acts on a particle is know r. 0 the acceleration can be found from New-
ton’s Second Law of Motion, The vector -+ o0 this law states that if, at any timer, s
farce Flr) acts or an object of mass m proo ~celeration a(t), then
EIXTEY 2 object with mass i tha -+ Jrcular path with constant angular
speed w has position veetor rit) = acos w + w41 j. Find the force acting on the

object and show that it is dirceted toward ihe oigin,

SOLUTION To find the force, we first need o know the acceleration:

virl = r'lt) = —awsin wti + awcos wt j
alt) = v'lr) = —aw'cos wti — qw’sin wt j

Therefore Newton's Second Law gives the force as
F(r) = ma(t) = —mw*(a cos wri + a sin wi i)

Notice _ﬂmt F(r) = —mw’r(1). This shows that the force acts in the direction opposite
Fl:e radius vector r{r) and therefore points toward the orj gin (see Figure 5). Sucha L
is called a centripetal (center-seeking) force, -

a A projectile is fired with angle of elevation  and initial velocity ¥ (5
Figure 6.) Assuming that air resistance is negligible and the only external force is due 10

gravity, find the position function r(r) of the project; . iaac the
i ile. W imizes
range (the horizontal distance traveled)? projectile. What value of e max

SOLUTION We set up the axes so that th

5 & I'ﬂ‘e:ct;i] s s . the force
due to gravity acts downward, we have Projectile starts at the origin. Since

F=ma= —mg j
where g = |a| = 9.8 m/s2. Thys

8= —gj



It you eliminate ¢ from Eguations 4
sea that v i5 a quadratic function o
path of the projectile is part of a pa
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Since V() =a, we have

¥ir)=-gtj+ C
where C = v(0) = v,. Therefore

rif) =vi) = —grj+ v
Integrating again, we obtain

M) =—lgr’j+ v+ D
But D = r(0) = 0, s0 the position vector of the projectile is given by
E r(n) = —igi’j + tvy
If we write | va| = v, (the initial speed of the projectile), then
Vo = tpcos i + vosin o
and Equation 3 becomes
r{f) = (sacos a)t i + [(vosin a)r — 1g1*] j

The parametric equations of the trajectory are therefore

4 x=(mecosa)r  y=(nsinak - igr’

The horizontal distance d is the value of x when v = 0. Setting v = 0, we obtain r =
vt = {2wy sin a)/g. This second value of r then gives

]

2oy 5in a _ vi(2 sin @ cos a) _ W sin 2a
L) g

d = x = (g CO8 o)

Clearly. d has its maximum value when sin 2a = |, that is, a = 7/4. -
EIIEET A projectile is fired with muzzle speed 150 m /s and angle of elevation
45° from a position 10 m above ground level. Where does the projectile hit the ground,

and with what speed?

SOLUTION If we place the origin at ground level, then the initial position of the projectile
is (0, 10) and so we need to adjust Equations 4 by adding 10 to the expression for v.
With vo = 150 m/s, & = 45°, and g = 9.8 m/s°, we have

¢ = 150 cos(m/4)t = 752 1
y=m+1mﬁﬂﬁﬂpﬁwmﬁ=m+vhﬁpqmﬁ

Impact occurs when y = 0, that is, 4.91* — 75421 - 10 =0. Solving this quadratic
e ing only the positive value of 1), we get

equation (and us!
V11,250 + 196
- 7542 + ;1325(1 196 174

Thenx = 75 V2 (21.74) = 2306, so the projectile hits the ground about 2306 m away.



890 CHAPTER 13 VECTOR FUNCTIONS

FIGURE 7

The velocity of the pmje:ctile is
v =r'@ =7

JTi+ (7542 — 981)]

So its speed at impact 15

|v(21.74)| = J752) + (71542 — 98" 21.74F = 151 m/s -

BN Tangential and Normal Components of Acceleration

When we study the motion of 2 particle, it is often useful to ne::l.ﬂlvt the ar.:c‘clnraﬁnn into twg
components, one in the direction of the tangent and the other in the direction of the noms,
If we write p = | v | for the speed of the particle, then

i vl
TO = Tem] ~ v

v
P—
v

and so v=1uvT

If we differentiate both sides of this equation with respect 1o f, We get

| | ekl |I— .-"1
5 a=y =0F1

If we use the expression for the curvature giv. « 13.3.9, then we have

g o | 1. :
i - = Kﬂ

e || v

The unit normal vector was defined in the precess - as N = T|T'], so [6] gives

I-.I"l — |T'|N = KL.%

and Equation 5 becomes
ﬁJ a=0vT+ kt’N

Writing ar and ay for the tangential and normal components of acceleration, we have

a= ﬂ"rT + aHN

where

ar=p' and ay = gy’

This resolution is illustrated in Figure 7.
is Ht:;:{ln;i: Whathw - ? says. The first thing to notice is that the binormal "'“Ewrﬂ
o f:I' . atter an {Ehject moves through space, its acceleration always Jies in e
; intsc: u::' d‘N {l_hx: ety P]Hnﬂ‘ (Recall that T gives the direction of motion N
s bt i et ve ot e ngntd

is Ko? + the rate of change of speed, and the f accele
1S Kt~ : ’ normal component of 8 )
% :;; :nheaf-‘:a:valmmumes mﬂ. square of the speed. This makes se ME':;}I we think of 2 pﬂ-‘_
ponent of the a;:'l i l:ﬂad means a large value of the curvature K, 5¢ oot
eration perpendicular to the motion is large and the passenge’ is

against a car door. High speed arou ; le
speed, ay is increased by a factor ;fdzlt_lw turn has the same effect; in fact, if you double?

Wil
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Although :
tion in Eqﬁaﬁﬁ;h;vﬁ“m‘jﬁsmns for the tangential and normal components of accelera-
this end we take the I's desirable to have expressions that depend only en r, r', and r". To
e the dot product of y = ¢T with a as given by Equation 7:

v a=yT- [U‘T + K!,I'JN}

=o0'T T+ kTN

- (since T-T=land T-N=0)
Therefore
- L - H
(9] T a=r[:]*r{rﬁl
v |r'(r) |

Using the formula for curvature given by Theorem 13.3.10, we have

10 et LT XTW] |0 X ()]
] ay = Ky X0 | r'(r) _—l )]

A particle moves with position function r(f) = (1% 1% r* ). Find the tangen-
tial and normal components of acceleration.

SOLUTION rif)=ri+rj+r'k
r'if)=2ti+ 2tj+ 3r'k
r'i=2i+2j+ 6tk

Ir')| = V87 + or*
' herefore Equation 9 gives the tangential component as

') - (1) 8t + 181
fir = i

Iri)] B+ 98
i j k
Since Fl X' =2t 2t 3| =6ri— 6"
2 2 6t

Equation 10 gives the normal component as

_Iroxr@] _ 642 1 -
* |x(0)| VB + 91t

I Kepler's Laws of Planetary Motion
We now describe one of the great accomplishments of calculus by showing how the mate-

ial of this chapter can be used to prove Kepler's laws of planetary motion. After 20 years
o dving the astronomical observations of the Danish astronomer Tycho Brahe, the Ger-
Gf;:umgthfma[iﬂiﬂ“ and astronomer Johannes Kepler (1571-1630) formulated the follow-
m

ing three Jaws.
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an elliptical orbit with the sun at one focyg
out equal areas in equal times,
planet is proportional to the cube of

Kepler's Laws
1. A planet revolves around t

2 The line joining the sun 10 & -
eriod of reyolution of a

axis of its orbit.

he sun in
plane[ sweeps

3. The square of the p
the length of the major

—_

In his book Principia Mathematica of lﬁﬂi'ﬂ Sir Isaac NEWSIGII ‘u';’lilﬁ able to Sh?w the
{hese three laws are consequences of two of his own laws, the e:fﬂn : Law of Motion 4y
the Law of Universal Gravitation, In what follows we prove Kepler’s First Law. The remg,

ing laws are left as exercises (with hints). , . .
Since the gmvimtinnnl force of the sun on a planet is so much larger than the forces

exerted by other celestial bodies, we can safely ignore .ﬂ]] bodies in th:z universe except th
sun and one planct revolving about it. We use a coordinate system with the sun at the o
ein and we let r = r(r) be the position vector of the planet. (Equally well, r could be the
position vector of the moon ora satellite moving :m:umfl the earth or a comet Moving aroun
a star.) The velocity vector is ¥ = ¢ and the acceleration vector is a = r”. We use the fol.
lowing laws of Newton:

F = ma

: {ridmt GMm
oo = ————u
72 r

Second Law of Motion:

Law of Gravitation.

- .7 are the masses of the planet and

where F is the gravitational force on the pii:
- = {1/r)r is the unit vector in the

the sun, G is the gravilational constant, r -

direction of 1.
We first show that the planet moves in one o

Newton's two laws, we find that

iy equating the expressions for Fin

GM
4= ———7r

unn':l so a is parallel to r. It follows that r * a = 0, We use Formula 5 in Theorem 132310
write

i
—r X y)=7r ]
d’;l[ ] FXv4+rxy

=\'><"'+r><a=ﬂ+ﬂ,=ﬂ
Therefore A

h "
?hiesr?-n]-;;::.: tﬁﬁﬁm vector. (We may assume that h # 0; that i, r and v are not pirale
e vector r = r(r) is perpendicular to h for all‘v alues of £, o the et

always lies in the plane through s
z t :
is a plane curve, gh the origin perpendicular to h. Thus the orbit of the o

To "
prove Kepler’s First Law we rewrite the vector h as follows:

antl

h=rXv=rx r'=ru X (ru)’

=ruX(ru + ru) = r3{u *u') + ”.-'(“ % u)
= riu X u"



FIGURE 8
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Then

—GM

LB T UX(FuXu)=—-GMu X (u X u)

r
= ~GM[(u-w)u = (u-wu’]  (by Theorem 12.4.11, Property )

e L I and, since |u(1}| = 1, it follows from Example 4 in Section 13.2 that
U u = (0. Therefore

axh=GMu

and so (VXh'=v' Xxh=aXh=GMu'

Inl‘.egxating both sides of this equation, we get

(n vXh=GMu+c

where ¢ is a constant vector.

At this point it is convenient to choose the coordinate axes so that the standard basis vec-
tor k points in the direction of the vector h. Then the planet moves in the xy-plane. Since
both v X h and u are perpendicular to h, Equation 11 shows that ¢ lies in the xy-plane.

This means that we can choose the x- and y-axes so that the vector i lies in the direction
of ¢, as shown in Figure 8.

If 6 is the angle between ¢ and r, then (r, 6) are polar coordinates of the planet. From
Equation 11 we have

reivxh =r-(GMu+e¢)=GMr-u+r-c
=GMru-u+ |r||c|cos® = GMr + rccos @
where ¢ = |¢|. Then

__r-tvxXxh 1 r-(vxh
" GM + ccos@ GM | + ecos@

¢/(GM). But

where ¢
r'{\-'XII:I=[r><v}-h=h.h=|h|2=h:

where i = |h|. So
__h/GM) _ eh’c
" l+ecosf | +ecosh

Writing d = h*/c, we obtain the equation

e ed
@ | +ecosd

Comparing with Theorem 10.6.6, we see ﬂ]:quEqualitm 12 is the polar equation of a conic
section with focus at the origin and eccentricity e. We know that the orbit of a planet is a
closed curve and so the conic must be an ellipse.

This completes the derivation of Kepler’s First Law. We will guide you through the der-
ivation of the Second and Third Laws in th.? Applied Project on page 896. The proofs of
these three laws show that the methods of this chapter provide a powerful tool for iy
ing some of the laws of nature.



