Wichita State University, Dept. of Mathematics
Last changed: 3 Oct 2017
Authors: Jen Pinkston, Justin Ryan, Arelis Silva
%display latex
# define the curve
var('t x y z');
a(t) = [cos(t),sin(t),2*t];
V(t) = [t,1-t^2,1+t^2];
C = matrix([[-1,0,0],
[0,1/sqrt(2),-1/sqrt(2)],
[0,1/sqrt(2),1/sqrt(2)]]);
A = -pi;
n = 10;
tp = 2*A/(n-1);
p = {}
for i in range(n):
p[i] = [a[0].substitute(t = A+tp*i),a[1].substitute(t = A+tp*i),a[2].substitute(t = A+tp*i)];
VV = {}
for i in range(n):
VV[i] = [V[0].substitute(t=A+tp*i),V[1].substitute(t=A+tp*i),V[2].substitute(t=A+tp*i)];
var = {}
for i in range(n):
var[i] = plot((1/3)*vector(VV[i]), start=vector(p[i]), color='blue', width='1.5');
vector_plot = sum(var[i] for i in range(n));
graph = parametric_plot3d(a,(t,-4*pi,4*pi),color='red');
show(graph + vector_plot)
Cp = {}
for i in range(n):
Cp[i] = C*vector([a[0].substitute(t = A+tp*i),a[1].substitute(t = A+tp*i),a[2].substitute(t = A+tp*i)]);
CVV = {}
for i in range(n):
CVV[i] = C*vector([V[0].substitute(t=A+tp*i),V[1].substitute(t=A+tp*i),V[2].substitute(t=A+tp*i)]);
Cvar = {}
for i in range(n):
Cvar[i] = plot((1/3)*vector(CVV[i]), start=vector(Cp[i]), color='purple', width='1.5');
C_vector_plot = sum(Cvar[i] for i in range(n));
Ca = C*vector(a(t));
C_graph = parametric_plot3d(Ca,(t,-4*pi,4*pi),color='green');
show(graph + C_graph,aspect_ratio=1)
show(graph + C_graph + vector_plot + C_vector_plot, aspect_ratio=1)
%%octave
B = randi(10,3,3);
B
B = matrix([[5,1,2],
[3,4,3],
[7,3,10]]);
B.det()
B = B/(det(B))^(1/3);
B
det(B)
B = matrix([[1,2,3],
[3,2,1],
[-1,1,-1]]);
det(B)
Bp = {}
for i in range(n):
Bp[i] = B*vector([a[0].substitute(t = A+tp*i),a[1].substitute(t = A+tp*i),a[2].substitute(t = A+tp*i)]);
BVV = {}
for i in range(n):
BVV[i] = B*vector([V[0].substitute(t=A+tp*i),V[1].substitute(t=A+tp*i),V[2].substitute(t=A+tp*i)]);
Bvar = {}
for i in range(n):
Bvar[i] = plot((1/3)*vector(BVV[i]), start=vector(Bp[i]), color='cyan', width='1.5');
B_vector_plot = sum(Bvar[i] for i in range(n));
Ba = B*vector(a(t));
B_graph = parametric_plot3d(Ba,(t,-4*pi,4*pi),color='brown');
show(graph + C_graph + B_graph,aspect_ratio=1)
show(graph + B_graph + vector_plot + B_vector_plot,aspect_ratio = 1)
B = matrix([[t,0,0],
[0,t^2,0],
[0,0,1-t]]);
B
B_star = matrix([[1,0,0],
[0,2*t,0],
[0,0,-1]]);
B_star
Bp = {}
for i in range(n):
Bp[i] = B(t = A+tp*i)*vector([a[0].substitute(t = A+tp*i),a[1].substitute(t = A+tp*i),a[2].substitute(t = A+tp*i)]);
BVV = {}
for i in range(n):
BVV[i] = B_star(t = A+tp*i)*vector([V[0].substitute(t=A+tp*i),V[1].substitute(t=A+tp*i),V[2].substitute(t=A+tp*i)]);
Bvar = {}
for i in range(n):
Bvar[i] = plot((1/3)*vector(BVV[i]), start=vector(Bp[i]), color='cyan', width='1.5');
B_vector_plot = sum(Bvar[i] for i in range(n));
Ba = B*vector(a(t));
B_graph = parametric_plot3d(Ba,(t,-4*pi,4*pi),color='brown');
show(graph + B_graph + vector_plot + B_vector_plot)
f1 = x^2;
f2 = y^3;
f3 = sqrt(z^2 + 1);
F = vector((f1,f2,f3))
F
Fx = F.diff(x)
Fy = F.diff(y)
Fz = F.diff(z)
JF = matrix([[Fx[0],Fy[0],Fz[0]],
[Fx[1],Fy[1],Fz[1]],
[Fx[2],Fy[2],Fz[2]]]);
JF
p = (1,2,3);
V = vector([2,-3,1]);
Fp = F(x=1,y=2,z=3)
JF_p = JF(x=1,y=2,z=3);
JF_p
VFp = JF_p*V
show(plot(point((1,2,3),size=10,color='red'))+ plot(V,start=vector(p),color='blue') +
plot(point(Fp,size=10,color='purple')) +plot(VFp,start=vector(Fp),color='green') )
jacobian(F,(x,y,z))