Math 555 Differential Equations I |
1. Determine the Taylor series for the given function centered about the
given point.
a.) | \(\sin x\), \(x_0 = 0\) | |
b.) | \(x^2\), \(x_0 = -1\) | |
c.) | \(\dfrac{1}{1 + x}\), \(x_0 = 2\) |
a.) | \(t^n\), where \(n\) is a positive integer | |
b.) | \(\sin t\) | |
c.) | \( \sinh t\) |
a.) | \( \dfrac{2s+1}{s^2 - 2s + 2} \) | |
b.) | \( \dfrac{2s-3}{s^2 + 4s - 4} \) |
Back to main page
Your use of Wichita State University content and this material is subject to our Creative Common License.