Math 555 Differential Equations I




Unit III Exam: Review Guide


This page contains problems similar to those that will appear on the Unit III Exam. These questions are all similar to the Good Problems and the recommended exercises.


1. Determine the Taylor series for the given function centered about the given point.

a.) \(\sin x\),   \(x_0 = 0\)
b.) \(x^2\),   \(x_0 = -1\)
c.) \(\dfrac{1}{1 + x}\),   \(x_0 = 2\)

2. Determine the radius of convergence of the power series \(\displaystyle \sum_{n=1}^\infty \dfrac{n!x^n}{n^n}\).

3. You wish to find a power series solution to the SODE \(y'' - xy' - y = 0 \) centered around the point \(x_0 = 1\). What is the recurrence relation?

4. Find the first four terms of each of the power series solutions to the initial value problem. \[\begin{cases} (1-x)y'' + xy' - y = 0, \\ y(0) = -3, \\ y'(0) = 2. \end{cases}\]
5. Determine a lower bound for the radius of convergence of series solutions to the SODE about each given value of \(x_0\) without solving the equation. \[\begin{cases} (x^2 - 2x - 3) y'' + xy' + 4y = 0; \\ x_0^1 = 4,\ \ x_0^2 = -4,\ \ x_0^3 = 0. \end{cases}\]
6. Determine the values of \(\varphi''(x_0)\), \(\varphi'''(x_0)\), \(\varphi^{(4)}(x_0)\), and \(\varphi^{(5)}(x_0)\) if \(y = \varphi(x)\) is a solution of the IVP. \[\begin{cases} x^2y'' + (1 + x)y' + (3\ln x)y = 0, \\ y(1) = 2, \\ y'(1) = 0. \end{cases}\]
7. Find all singular points of the SODE and determine whether or not they are regular. \[ (x\sin x)y'' + 3y' + xy = 0 \]
8. Use the definition of the Laplace transform to compute \(\mathcal{L}\{f(t)\}\) for the given functions.

a.) \(t^n\), where \(n\) is a positive integer
b.) \(\sin t\)
c.) \( \sinh t\)

9. Find the inverse Laplace transform \(\mathcal{L}^{-1}\{F(s)\}\) of the following functions.

a.) \( \dfrac{2s+1}{s^2 - 2s + 2} \)
b.) \( \dfrac{2s-3}{s^2 + 4s - 4} \)

10. Use the method of Laplace transforms to solve the initial value problem. \[\begin{cases} y'' - y' - 6y = 0, \\ y(0) = 1, \\ y'(0) = -1. \end{cases}\]
11. Use the method of Laplace transforms to solve the initial value problem. \[\begin{cases} y^{(4)} - 4y = 0, \\ y(0) = 1,\ \ y'(0) = 0,\ \ y''(0) = -2,\ \ y'''(0) = 0. \end{cases}\]
12. Sketch the graph of the function and rewrite it in terms of the unit step functions \(u_c(t)\), then find the Laplace transform of \(f\). \[f(t) = \begin{cases} \phantom{-}1, & 0 \leq t < 1, \\ -1, & 1 \leq t < 2, \\ \phantom{-}1, & 2 \leq t < 3, \\ -1 & 3 \leq t < 4, \\ \phantom{-}0, & t \geq 4. \end{cases}\]
13. Sketch the graph of the function, write it as a piecewise function, and compute its Laplace transform. \[ f(t) = u_1(t) + 2u_3(t) - 6u_4(t) \]
14. Find the inverse Laplace transform \(\mathcal{L}^{-1}\{F(s)\}\) of the function \[F(s) = \dfrac{e^{-s} + e^{-2s} - e^{-3s} - e^{-4s}}{s}.\]
15. Find the solution of the initial value problem, \[\begin{cases} y'' + y = f(t), \\ y(0) = 0, \\ y'(0) = 1, \end{cases}\] where \[f(t) = \begin{cases} \tfrac{t}{2}, & 0 \leq t < 6, \\ 3, & t \geq 6. \end{cases}\]




Back to main page


Your use of Wichita State University content and this material is subject to our Creative Common License.