M555: Differential Equations I (Spring 2018)

Instructor: Justin Ryan

Good Problems 4: Sections 3.1 and 3.2

Instructions Complete all problems, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists).

1. Solve the initial value problem

$$\begin{cases} y'' + 5y' + 3y = 0, \\ y(0) = 1, \\ y'(0) = 0. \end{cases}$$

$$C_1 = \frac{\sqrt{13}r^{\frac{1}{5}}}{2\sqrt{13}}$$
and
 $C_2 = \frac{\sqrt{13}r^{\frac{1}{5}}}{2\sqrt{13}}$

Find solve is

Solve the initial value problem

$$\begin{cases} 2y'' - 3y' + y = 0, \\ y(0) = 0, \\ y'(0) = 2. \end{cases}$$

$$y(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = \frac{1}{2}C_1 + C_2 = 0 \rightarrow C_2 = 2 - \frac{1}{2}C_1$$

$$-C_1 = 2 - \frac{1}{2}C_1 \rightarrow -\frac{1}{2}C_1 = 2 \rightarrow C_1 = -4$$

$$50 \quad C_2 = \frac{4}{3} \text{ and}$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1 = -C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 = 0 \rightarrow C_1)$$

$$y'(0) = (1 + C_0 =$$

3. Find a second order linear homogeneous differential equation with constant coefficients for which the general solution is

$$v(t) = C_1 e^{-t/2} + C_2 e^{-2t}$$

$$r_1 = -\frac{1}{2}$$
, $r_2 = -1$

characteristic egh is $(r-r_1)(r-r_2) = 0$
 $(r+\frac{1}{2})(r+2) = 0$
 $r^2 + \frac{7}{2}r + 1 = 0$

So the DE is
$$2y''+5y'+y=0$$

4. Show that the functions $y_1 = e^{rt}$ and $y_2 = te^{rt}$ are linearly independent.

$$W\left(e^{rt}, te^{rt}\right) = \begin{vmatrix} e^{rt} & te^{rt} \\ re^{rt} & e^{rt} + rte^{rt} \end{vmatrix} = e^{2rt} + rte^{2rt} - rte^{2rt} = e^{2rt} + qte^{2rt}$$