Name: M511: Linear Algebra (Spring 2018) Instructor: Justin Ryan Unit II Exam: Chapter 5 (In Class) WICHITA STATE UNIVERSITY
Instructions. Read and follow all instructions. You may not use a calculator or any other electronic device. You may use a two-sided $8.5" \times 11"$ page of your own hand-written notes.
Part I. True/False [2 points each] Neatly write T on the line if the statement is always true, and otherwise. In the space provided below the statement, give sufficient explanation of your answer
1.a. Let $A \in \mathbb{R}^{m \times n}$. The system $A\mathbf{x} = \mathbf{b}$ has a unique least squares solution.
1.b. Let $Q \in \mathbb{R}^{n \times n}$. If the columns of Q are orthonormal, then $Q^TQ = I$.
1.d. Let $G \in \mathbb{R}^{n \times n}$ such that $\det(G) = 0$. Then the formula $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T G \mathbf{y}$ defines an inner product on the vector space \mathbb{R}^n .
1.e. Let $\mathscr{B} = \{\mathbf{x}_1,, \mathbf{x}_n\}$ be an orthonormal basis for the inner product space (V, \langle , \rangle) . The matrix representation of \langle , \rangle with respect to the basis \mathscr{B} is the identity matrix.

Part II. Written Problems [12.5 points each] Complete all problems, showing enough work in the space provided.

2. Let (V, \langle , \rangle) be a finite-dimensional inner product space. Prove the triangle inequality:

For any
$$x, y \in V$$
, $||x + y|| \le ||x|| + ||y||$.

When does equality hold?

3. Consider the vector space $S = \text{span}\{e^t, e^{2t}, e^{3t}\}$ together with the inner product

$$\langle f, g \rangle = \int_0^{\ln 2} f(t)g(t) dt.$$

Find the matrix representation of this inner product with respect to the ordered basis $\{e^t, e^{2t}, e^{3t}\}.$

4. Use the method of least squares to find the equation of the best fit line to the date points.

5. Consider the subset S of (\mathbb{R}^4, \cdot) spanned by the ordered basis

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}, \begin{pmatrix} -1\\1\\1\\-1 \end{pmatrix} \right\}.$$

Apply the Gram-Schmidt orthogonalization process to \mathcal{B} to find an orthonormal basis of S.