Math 511: Linear Algebra




Unit III Exam: Review Guide


This page contains problems similar to those that will appear on the Unit III Exam. These questions are all similar to the Good Problems and the recommended exercises.


1. Find the eigenvalues and corresponding eigenspaces for the following matrices.

a.) \(\begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}\)

b.) \(\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}\)

c.) \(\begin{pmatrix} -2 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}\)

2. Let \(A \in \mathbb{R}^{2\times2}\) with characteristic polynomial \(p(\lambda) = \lambda^2 + b\lambda + c\). Show that \(c = \mathrm{det}(A)\).

3. Find the general solutions of each of the following systems of differential equations.

a.) \(\begin{cases} y_1' = y_1 + y_2 \\ y_2' = -2y_1 + 4y_2 \end{cases}\)

b.) \(\begin{cases} y_1' = y_1 + y_3 \\ y_2' = 2y_2 + 6y_3 \\ y_3' = y_2 + 3y_3 \end{cases}\)

4. Find the general solution of the system of second order differential equations.

\[\begin{cases} y_1'' = -2y_2 \\ y_2'' = y_1 + 3y_2 \end{cases}\]

5. Factor the following matrices into a product \(A = XDX^{-1}\) where \(D\) is diagonal.

a.) \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)

b.) \(\begin{pmatrix} 2 & 2 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}\)

c.) \(\begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ 3 & 6 & -3 \end{pmatrix}\)

6. Compute \(e^A\) for each of the matrices in problem 5.

7. Compute the \(e^A\) by applying the definition of the matrix exponential directly.

\[\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\]

8. Show that if \(A\) and \(B\) are two \(n \times n\) matrices with the same diagonalizing matrix \(X\), then \(AB = BA\).




Back to main page


Your use of Wichita State University content and this material is subject to our Creative Common License.