Name: M511: Linear Algebra Summer 2018 Comprehensive Final Exam (part I) WICHITA STATE UNIVERSITY
Instructions. Complete all problems below, showing enough work. Read carefully and follow all instructions. You may not use any notes or electronic devices. All you need is a pencil and your brain.
1. True/False [20 points] Neatly write T on the line if the statement is always true, and F otherwise [1 point each]. In the space provided below the statement, give sufficient explanation of your answer [3 point each].
1.a. Let $A, B, C \in \mathbb{R}^{n \times n}$. If A is similar to B and B is similar to C , then A is similar to C .
1.b. Let $L: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and $A \in \mathbb{R}^{n \times n}$ be a matrix representation of L with respect to any basis. If $L^k(\mathbf{x}) := L(L(\cdots L(\mathbf{x})\cdots))$, k -times, then A^k is a matrix representation of L^k with respect to the same basis.
1.c. If x and y are nonzero vectors in \mathbb{R}^n , then $\operatorname{proj}_{\mathbf{y}} \mathbf{x} = \operatorname{proj}_{\mathbf{x}} \mathbf{y}$.
1.d. Recall that a matrix $Q \in \mathbb{R}^{n \times n}$ is said to be <i>orthogonal</i> if and only if $Q^T = Q^{-1}$. If $Q_1, Q_2 \in \mathbb{R}^{n \times n}$ are orthogonal matrices, then Q_1Q_2 is also an orthogonal matrix.

trices.

_1.e. If A and B are $n \times n$ matrices with the same eigenvalues, then they are similar ma-

2. Find the best least squares fit line to the data.

3. Consider the matrix

$$A = \left(\begin{array}{ccc} 4 & -5 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{array}\right).$$

If possible, write A as a product XDX^{-1} , where D is a diagonal matrix and X is non-singular. If this is not possible, explain why.

4. Consider the linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$L\left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} -x_1 \\ x_1 + x_2 \\ x_1 - x_2 \end{array}\right).$$

Find the kernel and image of L.

5. Consider the space \mathbb{P}_3 with inner product

$$\langle p, q \rangle = p(1)q(1) + p(2)q(2) + p(4)q(4).$$

Find the matrix representation of this inner product with respect to the standard basis of \mathbb{P}_3 .

Name:
M511: Linear Algebra
Summer 2018
Comprehensive Final Exam (part II)

Instructions. Complete all problems below, showing enough work. Read carefully and follow all instructions. You may not use any notes or electronic devices. All you need is a pencil and your brain.

6. Consider the matrix

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

Compute the matrix exponential e^A .

7. Solve the initial value problem using your favorite method.

$$\begin{cases} y_1' = y_1 - 2y_2, \\ y_2' = 2y_2; \\ y_1(0) = 1, \\ y_2(0) = -3. \end{cases}$$

8. Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ be nonzero vectors, and let θ be the smallest positive angle between them. Prove the following formula.

$$\mathbf{x}^T \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$$

9. Consider the matrix

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right).$$

Apply the Gram-Schmidt algorithm to find an orthonormal basis for the column space of ${\cal A}.$

10. Consider the vector space $S = \text{span}\{e^{2t}\cos(t), e^{2t}\sin(t)\}$. Find the matrix representation of the derivative transformation on S,

$$D(f) = f'(t),$$

then use this matrix and the Fundamental Theorem of Calculus to compute

$$\int e^{2t} (3\cos t - 2\sin t) \, dt.$$