Name:_____ **M511: Linear Algebra** (Summer 2018) Good Problems 3: Sections 3.1–3.4 **Instructions** Complete all problems on this paper, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists). 1. In \mathbb{R}^3 let \mathbf{x}_1 and \mathbf{x}_2 be linearly independent vectors and let $\mathbf{x}_3 = \mathbf{0}$. Are \mathbf{x}_1 , \mathbf{x}_2 , and \mathbf{x}_3 linearly independent? Prove your answer. **2.** Consider the subset $S = \{ \mathbf{x} \in \mathbb{R}^2 \mid x_1 \cdot x_2 = 0 \}$. Is S a subspace of \mathbb{R}^2 ? Prove your answer. ## **3.** Consider the vectors $$\mathbf{x}_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \quad \mathbf{x}_2 = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}, \quad \mathbf{x}_3 = \begin{pmatrix} 1 \\ 5 \\ 5 \end{pmatrix}, \quad \mathbf{x}_4 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$ - *a.*) Are $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$, and \mathbf{x}_4 linearly independent in \mathbb{R}^3 ? Explain. - *b*.) Do \mathbf{x}_1 , \mathbf{x}_2 span \mathbb{R}^3 ? Explain. - *c.*) Do $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ span \mathbb{R}^3 ? Are they linearly independent? Do they form a basis for \mathbb{R}^3 ? Explain. - *d.*) Do \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_4 span \mathbb{R}^3 ? Are they linearly independent? Do they form a basis for \mathbb{R}^3 ? Explain. **4.** Let *S* be the set of all symmetric 2×2 matrices with real entries. (*a*) Show that *S* is a subspace of $\mathbb{R}^{2 \times 2}$; (*b*) Find a basis for *S*. 5. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ be linearly independent vectors in \mathbb{R}^4 and let $A \in \mathbb{R}^{4 \times 4}$ be nonsingular. Prove that if $\mathbf{y}_1 = A\mathbf{x}_1$, $\mathbf{y}_2 = A\mathbf{x}_2$, $\mathbf{y}_3 = A\mathbf{x}_3$, then $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$ are linearly independent.