Name:	
M511: Linear Algebra (Summer 2018)	

M511: Linear Algebra (Summer 201 Good Problems 6: Chapter 6

Instructions Complete all problems on this paper, showing enough work. A selection of problems will be graded based on the organization and clarity of the work shown in addition to the final solution (provided one exists).

1. Consider the matrix

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & 2 & -2 \end{array}\right).$$

- *a*.) Find all eigenvalues and eigenspaces of *A*.
- b.) Factor A into a product $A = XDX^{-1}$, where D is a diagonal matrix.
- *c.*) Use your answer to part (*b*) to compute A^7 .

2. Let A be a nonsingular $n \times n$ matrix, and let λ be an eigenvalue of A. a.) Show that $\lambda \neq 0$; b.) Show that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} .

3. Let *A* be a matrix whose columns all add up to a fixed constant δ . Show that δ is an eigenvalue of *A*.

4. Consider the matrices

$$A = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix}$$
, and $\mathbf{Y}_0 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Compute e^{tA} and use it to compute the solution of the initial value problem $\mathbf{Y}'(t) = A\mathbf{Y}$, $\mathbf{Y}(0) = \mathbf{Y}_0$.

5. Consider the real vector space $\mathbb{C} = \{z = x + iy \mid x, y \in \mathbb{R}\}$, and the linear transformation $L : \mathbb{C} \to \mathbb{C}$ defined by L(z) = iz. What do you think the eigenvalues and eigenvectors of L should be? Check your answer by writing the matrix representation of L with respect to the standard basis $\{1, i\}$, then finding the eigenvalues and eigenspaces of the matrix representation.

6. Solve the initial value problem

$$\begin{cases} y_1'' &= -2y_2 + y_1' + 2y_2' \\ y_2'' &= 2y_1 + 2y_1' - y_2' \\ y_1(0) &= 0, y_2(0) = 0, \\ y_1'(0) &= -3, y_2'(0) = 2. \end{cases}$$