Thursday, February 9, 2017 1:28 PM

homeomorphism: cont. funct. w/ cont. inverse discrete top. : each pt is open + chosed.

Defin. A sheaf on a topological space X is a topological space S space S called the étalé space or sheaf space, together with a continuous, surjective, local homeomorphism $T: J \to X$ such that

(1) each stalk $d_X := \pi^{-1}(x)$ is an algebraic subject object (group, ring, K-module) which discrete topology.

(2) All operations are continuous. $X : \mathcal{S}_{X} X_{\pi} \mathcal{S}_{X} \longrightarrow \mathcal{S}_{X} \quad \omega / \mathcal{S}_{X} X_{\pi} \mathcal{S}_{X} := \left\{ (s_{i_{1}} s_{2}) \in \mathcal{S}_{X} \right\}$ $\pi(s_{1}) = \pi(s_{2}) \right\}$

Idea is that we attach an algebraic structure to each point in a topological space (like a manifold)

Defin. If we sense that it maps stalk to stalk.

U preserves stalks $u: \mathcal{S}_X \to \mathcal{T}_{f(x)}$ and u is a morphism of the algebraic structure.

X

f(x)

U completely determines f.

 E^{\times} Any continuous right inverse to π , $\pi \circ \sigma = id_{\times}$, is a <u>Section</u> of $\pi : J \longrightarrow \times$.

The space of all sections of S is denoted by $\Gamma(S)$ or $\Gamma(X,S)$

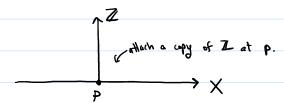
 (x, \mathcal{J}) is a map from $\mathcal{J} \rightarrow X$.

Is the requirement of continuity in pt 2 of the def. of a sheaf necessary if we always use the discrete topology?

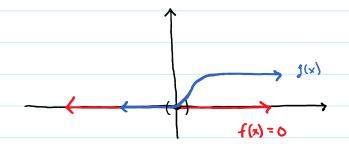
The section space is the same type of algebraic object as the stalks (under pt-wise ops).

Ex. Sky scraper Sheaf

. Sky scraper sheat
$$X$$
, $p \in X$. Define $Sp = \mathbb{Z}$ and $Sq = \{0\}$ at each point $q \neq p$.



<u>Defin</u> Let X be a topological space. $C(x) = \{ \text{cont. facts } f: X \rightarrow \mathbb{R} \}$. Two functions f and g are yerm - equivalent at XEX iff I an open noted U, w/ xEU such that flu = glu.



f = g for X < 0 f(0) = g(0) $f(x) \neq g(x)$ for x > 0.

These are not germ - equivalent at x=0 b/c they are not equal on any nbhd where x>0.

An equivalence class $[f]_{\chi}$ of this relation is called a germ at x. Choose a function f, then [f] is its germ as a function on X.

sheef of cont. functions on X.

Ex let Cx is the union of all germs at x EX and consider the set

$$C(x) = \bigcup_{\pi \in X} C_X$$
 define $\pi : C(x) \to X$ by $[f]_x \mapsto \chi$

Let $U \subset X$ be open, and let $f \in C(U)$. From sets $\lim_{x \to U} [f]_x \subseteq C(x)$

These sets form a base for the topology on C(x).

Thus, C(x) is a sheaf over X called the sheaf of germs of cont. functions on X.

 $E^{\infty} = \text{"Smooth"}$ when X is a manifold and $f \in C^{\infty}$ $\overline{S} : E \xrightarrow{\longrightarrow} M \quad \text{a fiber bundle}, \quad \Gamma(E) = \overline{S} : M \xrightarrow{\longrightarrow} E \quad \text{smooth} \quad | \ \overline{J} \circ \sigma = i \, d_{M} \xrightarrow{\longrightarrow} E$ Then define $E \xrightarrow{\longrightarrow} M$ to be the sheaf of germs of smooth sections of E.

In particular C is not Hausdorff! (i.e. r.g. E cannot be a monifold)

Taking limits means we lose Hausdorff in these types of spaces.

$$C(x) \qquad \sigma: X \to C(x) \text{ is a cont. Section.}$$

$$T(C(x)) = \{ \text{ section space } \}$$

Theorem. The R-algebras C(X) and $\Gamma(C(X))$ are isomorphic.

 $f_{\chi} \mapsto [f]_{\chi}$ pt. wise.

② For each inclusion V ≤ U, there is a morphism Pvu: F(U) → F(V) in ⊆.
(cx. if Category is groups, then p is a morphism).

 $F: \mathcal{O}(x) \to \mathbb{C}$, $\mathcal{O}(x)$ is the category of open sets of X, w inclusion maps as arrows.

Faltaches an object (categorical object) to each open set.

For each $U \in O(x)$, the elements of F(u) are the sections of F over U.

betin. A presheaf Fon X is a sheaf if it satisfies the locality and gluing properties.

locality: If $\{U_i\}$ is an open cover of V and if $s,t\in F(V)$ such that $S|_{U_i}=t|_{U_i}$ for all i, then S=t.

gluing: If $\{U_i\}$ is an open over of V_j and if for each i, $S_i \in \mathcal{F}(u_i)$ s.t. for each pair (u_i, u_j) $S_i = S_j$ on $U_{ij} = U_i \cap U_{ji}$, then there is an $S \in \mathcal{F}(V)$ s.t. $S|_{u_i} = S_i$ and $S|_{u_j} = S_j$.

Sheaves on Manifold

 $e^{j} \rightarrow M$ (germs of) j-times diff table functions on M

 $\Omega^P \rightarrow M$ sections are differential p-forms on open U.

" wtangent sheaf" Stalks are groups under pt. wise mult.

 $\mathcal{D} \rightarrow \mathcal{M}$ sections are finite-order diff. ops. on open U.

Stalks are

A poir (X, O_X) where O_X is a sheaf of rings on X, is called a ringed space.

A ringed space - sheaf where all stalks are rings.

An important case: each stalk is a <u>local ring</u>: a ring w/ unique maximal ideal m. This is called a <u>locally ringed space</u>.

Ex An n-dim C^{∞} -manifold M is a locally ringed space whose sheaf O_{M} is isomorphic to the sheaf of smooth functions on IR^{M} .

Stalks are R-algebras.