Jets following KMS Ch. 4.

Defn'. let Y, S: R→M smooth curves. 8 and S have <u>rth</u>
order contact at O∈R iff for every smooth function

P∈ SM, then Po8 - PoS vanishes to rth order at O∈R



 $\varphi \circ Y : \mathbb{R} \to \mathbb{R}$  where  $(\varphi \circ Y)^{(k)}(0) = (\varphi \circ \delta)^{(k)}(0)$   $\varphi \circ \delta : \mathbb{R} \to \mathbb{R}$  for all  $0 \le k \le C$ 

Prop. 8 ~ S is an equiv. relation.  $\square$  do this.

- O-order confact => The two curves intersect at a point.

- Contact only depends on the germs of Y, S.

Lemma.  $f: M \rightarrow N$  smooth map between manifolds. If  $Y \sim_r S$ , then  $(f \circ Y) \sim_r (f \circ S)$ 

i.e. composition we a smooth map perserves contact.

Defn'. Two smooth maps f, g: M→N are <u>r-jet equivalent</u> at a point p∈M, iff for every smooth curve Y: IR→M s.t.

Y(0) = p, then the curves (fox) and (goY) in N have rth-order contact at 0 ∈ IR.



we write  $\int_{P}^{\infty} f = \int_{P}^{\infty} g$  or  $\int_{P}^{\infty} f(p) = \int_{P}^{\infty} g(p)$ . P is in domain

an r-jet is an equivalence class under this relation.

- jets defined at a point.

- r-jets depend only on the germ.

- The set of all r-jets denoted by J (M,N) (jets an be local maps)

If  $X \in J^r(M,N)$ , then we can find an f (pointwise) s.t.  $X = J \hat{p} f$ 

The source map is  $\sigma(X) := p \in M$  source and target The target map is  $\gamma(X) := f(p) = g \in N$  are unique.

Jp(M,N) = set of all r-jets with source p. Jr(M,N) = set of all r-jets with target g.

 $J_{\rho}(M,N)_{g} := J_{\rho}(M,N) \sqcap J'(M,N)_{g}$  - set of all r-jets we source  $\rho$  and target g.

Denote by  $\pi_s^r$ ,  $0 \le s \le r$ , the projection  $\pi_s^r: 1 \not p f \mapsto j \not p f$  projection to a lower-order jet space.

All r-jets form a category, the units of which are identity maps of manifolds.

(unit means all arrows are inventable.)

An  $X \in J_p^{-1}(M,N)_q$  is invertible iff  $\exists X^{-1} \in J_q^{-1}(N,M)_p$  such that

$$X^{-1} \circ X = \int_{\rho}^{\rho} (id_m)$$

 $\underline{T_m FT} : X \in J^r(M,N)$  is invertible iff  $\pi_i^r(X) \in J^r(M,N)$  is invertible.

in J'(M,N)

Phil Parker - local word. POV -

Defin. A <u>multi-index</u> of <u>range</u> n is an n-tuple of non-negative integers  $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ .

$$|\alpha| = d_1 + d_2 + ... + d_n$$
  
 $d! = d_1 | d_2 | ... d_n | (0! = 1)$ 

let  $x = (x', x^2, ..., x^n) \in component fact. \in \mathbb{R}^n$ 

Then 
$$X^{\alpha} = (x^1)^{\alpha_1} \cdot (x^2)^{\alpha_2} \cdot \dots \cdot (x^n)^{\alpha_n}$$

$$\mathcal{D}^{\alpha} f = \frac{(9x_{i})_{\alpha_{i}} (9x_{s})_{\alpha_{s}} \cdots (9x_{s})_{\alpha_{s}}}{9_{|\alpha_{i}|} f}$$

the partial derivative of  $f: U \subseteq \mathbb{R}^n \to \mathbb{R}$ 

The multinomial expansion is

 $\left(X_{1}+X_{2}+X_{3}+\cdots+X_{n}\right)_{K}=\sum_{|X|=K}\left(\begin{matrix} x\\ K\end{matrix}\right)X_{\infty}$ 

Defin. The MacLaurin-Taylor polynomial of order r of  $f \in f(u)$  at O is

$$p^{r}f = \sum_{k=0}^{r} \sum_{|\alpha|=k}^{r} {k \choose \alpha} D_{\alpha} f(0) \times^{\alpha}$$

the rth-order polynomial approximation of f at p.

Defn! Two functions  $f, g \in \mathcal{F}(U)$  are r-jet equivalent at p iff  $p^r f = p^r g$  at p.

RE. This is independent of choice of local coordinates.
(Prove This.)

## Back to Bundles

Let  $\pi: E \to M$  be a smooth fiber bundle  $w \mid din M = n$  and din F = K.  $(F = \pi^{-1}(\rho))$  to make model fiber).

 $J^r E = J^r(\pi) = J^r(E \xrightarrow{\pi} M)$ = set of r-jets of local sections of  $\pi$ .  $\{\sigma: U \in M \rightarrow E \mid \pi \circ \tau = id_M\}$ 

JE is The <u>rth-jet</u> prolongation.

JECJ (M, E) is a closed submanifold.

Two bundle structures:

①  $\sigma: J^rE \to M$  (bundle over M where all the fibers are the jets whose source is E.  $(J_p^rE)$ 

J°E = E we still have π;: J E → J°E

- T: J'E → M is always an affine bundle for every E.

(affine - vector space wlo origin)

- When E is a vector bundle, then JE is a vector bundle.

| We obtain a    | tower of jet prolongations.                          |
|----------------|------------------------------------------------------|
|                |                                                      |
| <i>:</i>       |                                                      |
| Ţ              | The infinite jets are elements of                    |
| J³£            | JE = Lim JE                                          |
| $\int \pi_2^3$ |                                                      |
| J'E            | J <sup>∞</sup> E is <u>not</u> a manifold, hence not |
| √ π,²          | a bundle. But it is a <u>ringed space</u> !          |
| J'E            | (sheafs!)                                            |
| √ π' = ~       |                                                      |
| E              |                                                      |
| J π            |                                                      |
| M              |                                                      |
|                |                                                      |